HHCTHTYT HHOOPMaLMOHHBIX M BHIYHCIHTENbHBIX TexHosoruit MOH PK
Kasaxckuit Hauponanb b YHuBepcuter nMenu anb-dapabu
YHuusepcuter Typan

JI0O6THHCKUI TeXHUYeCKHi yHHBepcuTeT, [losbiia

«FbU1BIM OpAaceI»

YHUBEPCUTETI

MATEPHUAJIbI

IV MexxayHapoaHoii Hay4HO-NIPaKTHY€CKOH KOH}epeHLuH
"MHdopmaruka u npukiagHas MaTeMaTHKa",
NOCBAIEHHOH 70-71eTHEMY I06MIe10 npodeccopos
Busiposa T.H,, Banbaemapa Byiiuuka
H 60-s1eTuI0 Npodeccopa Amupranuesa E.H.

25-29 ceHTs6pb 2019, AnMatsel, Kasaxcran

YacTp 2

Anmartel 2019

Cekums 2. UHbOpMaLMOHHO-TeJIEKOMMYHHKALIMOHHBIE TeXHOIOTHH. CHCTEMBI U CETH
nepeaayu aAaHHbIX. MHTepHeT-TexHonornu. Obnauneie TexHonoruu. [lapasuienbHple BHIYMCIEHUS.
Pacnpenenénneie Boiurcnenus. CynepKoMIblOTEpHbIE U KiacTepHble cucTeMbl. O6paboTka GonbLnMx
o6bémoB nanubix (Big-data). ['eonHpOpMaLUMOHHbIE CHCTEMBI M TEXHOIOrMH. MHHOBALIMOHHBIE
obpa3oBaTe/ibHbIE TEXHOIOTHH

30. Guttman, L. A general nonmetric technique for finding the smallest coordinate
space for a configuration of points. Psychometrics, 1968.- Vol. 33, N. 4. — P. 469-506.

31. Data text classification [Internet] https://github.com/zamgi/lingvo--classify.
(access 10/08/2019)

PARALLEL CLUSTERING USING PARTITIONED GLOBAL
ADDRESS SPACE MAPREDUCE MODEL

IShomanov A.S., 2Mansurova M.E.
e-mail: adai.shomanov@nu.edu.kz, mansurova. madina@gmail.com
!Nazarbayev University, Nus-Sultan, Kazakhstan,
’Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract. The paper introduces Mapreduce solution to a parallel clustering problem
based on partitioned global address space (PGAS) model. In particular, paper discusses
some optimization techniques that can lead to a better resource utilization and faster
performance. One of the main issues that arises in parallel clustering is how to efficiently
distribute the workload and minimize additional overheads of data exchange. Partitioned
global address space model utilizes a one-sided communication pattern which outperforms
MPI on the bandwidth limited problems and offers a convenient and transparent memory
access model. Partitioning a memory into private and shared allows to create
communication patterns among threads that enable flexibility in terms of handling data
distribution with locality awareness in mind.

1 Introduction

Clustering problem can be seen as a non-supervised learning approach to find
similarity groups inside a dataset. There exist 4 different categories of algorithms for
solving a clustering problem: connectivity, centroid, distribution and density based
approaches. One of the most useful and efficient category in terms of parallelizability is a
centroid-based. Centroid-based clustering works by smoothly moving cluster centers from
some initial position to a position where closeness within a single cluster is minimized.
Formally, the centroid-based clustering problem can be defined as minimization problem
(see Eq. 1), where the goal lies in finding such an assignment S of points to cluster centers
such that this assignment minimizes within-cluster squared differences of data points.

argmin T, Tees I - (6)
In terms of Mapreduce model, the problem can be decomposed into 2 or more stages
[1]. In the first stage called map data needs to be divided into several chunks and

distributed among participating threads of execution. The result of the map stage is a set
of key-value pairs, where key corresponds to some aggregate feature that can be extracted

350

IV MesxayHapoaHas HaydyHoO-NpakTHYecKas KOH(epeHIHs
"HHdopmaTuka 1 NpUKIaaHas MaTeMaTHka',
nocesiweHHas 70-netHemy robuneto npodeccopos busiposa T.H., Bansaemapa Byiiunka
u 60-netuio npopeccopa Amupranuesa E.H. 25-29 centa6ps 2019, Anmatsl, Kazaxcran

from the given input. In the second stage called reduce, that follows after the map stage,
grouped in an intermediate shuffle stage key-value pairs are distributed among parallel
threads. These operations of moving and copying the key-value pairs from a memory of a
one thread to a memory of another, comes with a set of problems for the runtime
environment.

THREAD 0 THREAD 2 THREAD 3

T—
2

L

Fig.1 PGAS - based Mapreduce model.

In this work we present a parallel centroid-based clustering algorithm written in a
Partitioned Global Address Space based Mapreduce system. PGAS — based Mapreduce
system [2] was modified and rewritten to work with arbitrary keys and values. The
previous implementation supported only a limited amount of data types. For the underlying
mechanism to implement Mapreduce based on partitioned global address space model
shared hashmap data structure was selected. Hashmap possesses a number of features that
makes it suitable for a Mapreduce system. Operations on hashmap are performed in
asymptotic complexity of 0(1)), which provide fast lookup and insertion operations for
the desired key. In our approach, the intermediate key / value pairs stored in a affine
hashmap located in a shared portion of thread's memory (see Fig. 1). Reduce threads are
assigned key-value pairs after shuffle collectively gathers and groups keys across hashmap
structures.

The operations on shared hashmap can be performed transparently by any thread,
however, only a single, so called affine thread, is assigned to store in its local memory
underlying key-value pairs associated with data partition assigned to that thread. The cost
of local operation by orders of magnitude faster than remote accesses, therefore, it is
important to consider optimal thread-to-data mappings. In PGAS — Mapreduce system we
proposed a scheduling approach that assigns threads to data according to an optimality
criterion that consists of workload and network latency. The given optimization problem
solved by means of a genetic algorithm that tries to iteratively improve the scheduling till
the process converges to a particular solution.

351

Cekumsa 2. HHdOpMALMOHHO-TEIEKOMM YHHKALIMOHHbIE TeXHOIOrHH. CHCTEMBI M CETH
nepeaayn qaHHbIX. MHTepHer-TexHonornn. Obnayssie TexHonoruu. IapasienbHble BEIYHCIEHHS.
Pacnipenenénnbie Boiuncnenns. CynepkoMIbIOTepHbIe H KIacTepHbie cuctembl. O6paboTka GoMbLIHX
06bEMoB nauHbIX (Big-data). [eonHdopMaLMOHHBEIE CHCTEMBI M TEXHONOrMH. VIHHOBAUMOHHbIE
obpa3oBaTesbHble TEXHOIOrHH

Due to large heterogeneity of different HPC platforms and parallel systems there has
been some efforts to create Mapreduce systems for specific architectures [3,4] or target
specific domain areas [5,6,7].

2 Main part
PGAS Mapreduce system relies on efficient execution of bulk and fine-grained
memory operations among threads. In this paper we propose a new implementation of
shuffle procedure that uses collective operations in order to exchange key-value pairs
among threads. The process of collective exchange is similar to how collective gather
operation works in MPI environment. Hashmap entries associated with a particular key are
grouped together in a orderly way, such that values are copied in a bulk transfers according
to a tree-like topology (see Fig. 2). This approach allows reducing by order by magnitude
amount of fine-grained memory operations. The second modification to our previous
implementation of PGAS Mapreduce is to add support for arbitrary data types for key-

value pairs. The implementation is based on using shared void pointers.
! thread 0

thread 0 > thread 2

T [|
‘ thread 0 | ’ thread 1 | thread 2

Fig. 2 Collective data exchange for key/values pairs

Mapreduce based parallel clustering algorithm relies on dividing the workload such
that map processes are responsible for assigning data points a specific cluster centers by
forming corresponding key-value pair of cluster center paired with a data point value (see
Fig. 3). Then all data points that were assigned to the same cluster center are grouped
together in a shuffle phase. Reduce phase is responsible for modifying cluster centers
according to a mean sum of all data points in a cluster (see Fig. 4).

Map processes write generated by Emit key-value pairs into a local part of shared
hashmap structure. After map processes finish their execution shuffle procedure calls
collective merge on all generated keys in order to distribute all values associated with
specific keys to their scheduled threads. Reduce processes fetch the data from shared
hashmap according to collective exchange algorithm described above.

352

IV MexnayHapoaHas Hay4HO-NpaKTHYeCKas KOH(MepeHLMs
"HMudopmaruka u npukiaaHas MaTeMaTuka",
nocesiuerHas 70-netuemy ro6unero npodeccopos busposa T.H., Bansaemapa Byiiumka
1 60-netnio npodeccopa Amupranuesa E.H. 25-29 centsbps 2019, Anmarsi, Kazaxcran

Algorithm: Map
input : shared void * clusterCenters, string key. void * inputSplit
output: pair(int clusterCenterld,void * pointVal)
void * points = Tokenize (inputSplit);
foreach point € points do
minDist < maxDistanceV alue;
for clusterID + 1 to K do
dist = findDistance (point.clusterID);
if dist < minDist then
minDist « dist;
cluster MinIndex < clusterID:;
Emit (cluster MinIndex point);
end
end

Fig. 3 Map algorithm for centroid-based Kmeans clustering

3 Results

In this section we present a parallel algorithm for a clustering problem of the
collection of documents. The aim is to group similar documents given bag of words
description of documents inside a dataset. Dataset has been taken from UCI Machine
Learning Repository for the testing purposes [8]. Dataset consists of 300000 documents,
102660 unique words and 69679427 words in total.

Algorithm: Reduce
input : shared void * clusterCenters. int cluster|D, void * values
output: pair(int clusterCenterld,void * newClusterCentroid)
foreach point € values do
| average « average + findMagnitude(point):
end
clusterCenterld = clusterID;
newClusterCentroid « getAverage(average);
Emit (clusterCenterldnewClusterCentroid);

Fig. 4 Reduce algorithm for centroid-based Kmeans clustering

Each document and word is encoded by the unique identifier. The input consists of
number of rows that are represented by the following tuples: document id, word id, the
frequency of the word. Our first step was to transform above given bag of words
representation to a sparse matrix form. For this task we created a separate Mapreduce task.
The result of this preprocessing Mapreduce task was a vectorized representation of tuples
consisting of document identifier as a key and a list of associated word frequencies. In our
experiments we used a virtual machine with 64 vCPUs and 240 GB memory from Google
Cloud Platform. Experimental setup consisted of Berkeley UPC runtime version 2.28.0,
The Berkeley UPC-to-C translator, version 2.28.0.

Results of the first run were specified as an input to a second Mapreduce task. This
Mapreduce task corresponds to a clustering algorithm described in the previous section.

353

Cexums 2. UHOPMaUHOHHO-TeIEKOMM YHHKALIHOHHBIE TeXHONOrMU. CHCTEMBI 1 CeTH
nepeaayun naHHbIX. MHTrepHer-TexHonorun. Ob6naunsie TexHonoruu. [TapasuienbHble BLIYHCIICHHUA.
Pacnpenenénnble Borumcnenus. CynepkoMnbIoTEpHbIE 1 KnacrepHble cucteMbl. O6paboTka GosbLmx
06bEMOB anHbIX (Big-data). [eonHdOpMaLMOHHBIE CHCTEMBI H TEXHOJONHH. HHHOBaLMOHHbBIE
obpazoBaTesibHbIE TEXHOMOTHH

140

130

120

running time (seconds)

100 A

4 8 16 32 64
number of cores

Fig. 5 Scalability of parallel Kmeans algorithm

Presented parallel Mapreduce algorithm shows good scalability which can be seen
from Fig. 5.

4 Conclusion

This paper presented Mapreduce solution to a parallel centroid-based clustering
problem based on partitioned global address space (PGAS) model. Several optimizations
to a previous implementation of Mapreduce system have been introduced: a support for an
arbitrary data types for key-value pairs and optimized tree-based collective exchange for a
shuffle procedure.

5 Acknowledgement

This work was supported in part under grant of Foundation of Ministry of Education and
Science of the Republic of Kazakhstan “System development for knowledge extraction from
heterogeneous data sources to improve the quality of decision-making” (2018-2020) under project
ID no. AP05132933.

References

1. Jeffrey, D., Ghemawat, S.: MapReduce: simplified data processing on large
clusters. In: Proceedings of the 6th conference on Symposium on Operating Systems
Design & Implementation, December 2004, vol. 6, pp. 10-10.

2. Shomanov, A., Akhmed-Zaki, D., Mansurova, M.: PGAS Approach to
Implement Mapreduce Framework Based on UPC Language. In: Malyshkin V. (eds)
Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science, vol
10421. Springer, pp. 342-350, Cham (2017)

3. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. & Kozyrakis, C.:
Evaluating MapReduce for multi-core and multiprocessor systems. In: Proceedings -
International Symposium on High-Performance Computer Architecture, 2007, pp. 13.

354

IV MexayHapoHas Hay4HO-NpakTHYECKas KOH(epeHLus
"Hudopmarrka u npukiaaHas mareMatvka',
noceseHHas 70-netHemy o6unero npodeccopos busposa T.H., Bansaemapa Byiiumka
1 60-neruro npodpeccopa Amupranuesa E.H. 25-29 centa6ps 2019, Anmarel, Kazaxcran

4. He, B., Fang, W., Luo, Q., Govindaraju, N.K. & Wang, T.: Mars: A MapReduce
framework on graphics processors. In: Parallel Architectures and Compilation Techniques
- Conference Proceedings, PACT, 2008, pp. 260.

5. Engelmann, C. & Bohm, S.: Redundant execution of HPC applications with MR-
MPL. In: Proceedings of the 10th IASTED International Conference on Parallel and
Distributed Computing and Networks, PDCN 2011, pp. 31.

6. Hoefler, T., Lumsdaine, A. & Dongarra, J. 2009, Towards efficient mapreduce
using MPI. In: Ropo M., Westerholm J., Dongarra J. (eds) Recent Advances in Parallel
Virtual Machine and Message Passing Interface. EuroPVM/MPI 2009. Lecture Notes in
Computer Science, vol 5759. Springer, Berlin, Heidelberg

7. Kang, U., Tsourakakis, C.E. & Faloutsos, C.: PEGASUS: A peta-scale graph
mining system - Implementation and observations", Proceedings - IEEE International
Conference on Data Mining, ICDM, 2009, pp. 229.

8. Dua, D, Graff, C. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information
and Computer Science, 2019.

KAPBIK KO3I

AyssoBa A.M., Annouea H.M.
a.auezova@mail.ru, alibieva n_85(@mail.ru
«KACIPKM» Kazakcmanovlk meouyuna ynusepcumemi,
an — @apabu ameinoaesr Kazax ynmmulx yHusepcumemi

Anoamna. Xanvix canvinvly ocyiMeH dicane OHblH 21-AYKAMbIHIY HCAKCAPYbIMEH
dHep2us pecypcmapeina dezen Kaxcemminik ecyoe. Fanamuwapoviy Kyuieioi - 2 Muiiuapo,
sHcahanoviy sxonomuka — 140% - 2a, snepzusnvr mymoiny muimoiniei - 45%-ea ocmi.
Kaceun sxonomuka" ocahanowis Kayinmepoen — Kaszakcmannwly — mayexenoepin
memenoemyze kemekmeceol. Moicanvl, krumammoly o32epyi, naudansl Kazbéaiapowiy
CapKblLILybl, CY PeCypCmapbliblly MANULbLIbIZbL. COHbIMEH Kamap, Gipkamap capanuiviiap
MeH MemlekemmiK Kvizmemkepaepoiy nikipinuwie, "Jcacoin" ynzize kewy en yudin
KOCbIMULA MYMKIHOIKmMep auiaosr [5].

Tyain ceszdep: oucapwix kesi, cayie wwizapamoin ouoomap (CLLJ), ocacein
IKOHOMUKA.

Kipicne

Tynrbin TlpesunentiMiz Hypeynraw O6iwyns HazapGaeB MeminekeT anapiHa
OapiblK WApyallbUIbIK CananapblHAa SHEPrUsHbl TYThIHYAbl AHTapIbIKTail yHeMIey
MiHZeTIH KOMabl. OTaHIBIK KaCIiMOpBIHAAP JKMHAKTaFraH Toxipubere cyieHin, Kasipri
3aMaHFbl TEXHOJIOTUSJIBIK UMK/ - 1aMy/aaH Gacran, xanmnail eHaipyre AeiliH -)apTbliaii
OTKI3ril OHIMAEP/i XKAPBIKTAHBIPY XOJAMHITIH ayKbIM/BI MIH/ETIH LIEIy AeM TyCiHei.
JKana xapTeliai eTKi3riu xKapblK Ke3/epiH naifanany — apbIKTaHIbIPY KYpPBUIFbIIaphl
YLUIIH MaHbI3/1bl 3HEPTUs, YHEMEYre KOJl JKeTKi3eTiH GipaeH Gip o,

355

